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Modeling and Analysis of Semi-Active Dampers in Periodic
Working Environments

Branislav Titurus® and Nick Lievent
University of Bristol, Bristol, England BS8 ITR, United Kingdom

DOI: 10.2514/1.41774

This paper develops the concept of the semi-active hydraulic damper representing the control component assumed
to be located in the periodic working environment. The assumption of the periodic working environment is
applicable for a wide range of vibration-related applications. Within a specified framework, a reduced-order
physically based mathematical model of the damper is established using realistic assumptions and concepts from the
hydraulic system theory. A general need for damper activity parameterization is considered, retaining the periodic
nature of the application, and the two specific parameterization instances are considered: a local piecewise
polynomial and a global multiharmonic activity parameterization. This device is further demonstrated in simulated
case studies based on realistic values of physical devices. The activity of the damper is assumed to be based on the
periodic modulation of the size of the flow restrictor located between two working chambers of the damper. The
general physical effects associated with the damper operation in this working mode are investigated and explained

for both types of damper activity parameterizations.

Nomenclature

Ap = cross-sectional area of the symmetric piston

Apy = pseudosection function

Ay = cross-sectional area of the valve opening

B, = constant bulk modulus of a hydraulic fluid

Cp = discharge coefficient

cp = coefficient of a general algebraic model of the
damping force

D, D, = linear and quadratic flow-pressure coefficients

D, = azimuth angle domain, [0, 27]

do = diameter of the circular orifice

d(o)/dt = time derivative, (o)

d(o)/dy = spatial or azimuth derivative, (o)’

Fp = damper force

f(o) = damper state-space model

g(0) = nonlinear response generator function

7 = set of damper inputs

K = composite discharge constant

m = mass flow rate

Np = number of the damper model states

Np = number of the parameters used in the activity
parameterization

Ny = total number of valve physical parameters

P = activity parameterization family

)4 = absolute and homogeneous pressure in the fluid
container

p = vector of the parameters used in the activity
parameterization

Pv = vector of the valve parameters

Pvai = value of the ith active valve parameter

(0] = volumetric flow rate

g = inverse of the function ¢

q(o) = flow pressure static characteristics

R = set of observed damper outputs
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Re = Reynolds number

r = generic output response quantity

sign(c) = signum function

u set of discharge coefficient factors of the

controllable flow-restricting element

union of the intervals

absolute value of the (control) variable of the
controllable flow-restricting element

Ule]
u

Vv = volume of the fluid chamber

Whpe = work done per one cycle of the damper operation

X = local polynomial of the activity parameterization
family P,

X = state vector

xR = number of cycles per one revolution

Xy = valve spool displacement

xQ = angular frequency represented as an integer
multiple of the rotating frequency

Vp = piston displacement

o = exponent of the polynomial representation of the
inverse flow-pressure characteristics

B = isothermal tangent compressibility of the hydraulic
fluid

Ap = pressure difference due to pressure losses

n = fluid dynamic viscosity

A = ratio of the initial volumes of the damper working
chambers

b4 = scaled quantity

P = density of hydraulic fluid

¥ = azimuth angle

Q = fundamental angular frequency

absolute value

[e]

L

HIS paper provides an introductory study of the use of a

hydraulic semi-active damper used for vibration suppression.
This component is assumed to be placed in the periodic working
environment. A specified regime can (in general) represent steady
operating conditions of structures with rotating components (such
as turbines), steady flight regimes of the rotary wing aircraft, and
structures with propellers and rotating blades (such as ships and
wind turbines), and many others. The hydraulic damper is therefore
considered as a candidate solution for adaptive vibration suppression
via its integration with an active component, resulting in a semi-
active device. Despite this modification, the damper retains its basic
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physical mechanism of operation; therefore, the term semi-active
damper will be used throughout this paper.

Early references and research in the field of semi-active tech-
nologies can be traced to the late 1970s and early 1980s, with
applications in the car industry. The summary of the investigation of
semi-active concepts was given by Karnopp [1]. In his work, he also
proposed and investigated multiple designs of semi-active damping
components (as well as their limitations) used to control vibrations
transmitted due to road unevenness through the car suspension
system into the car chassis. A more recent study of this approach,
with a focus on the modeling issues, is presented by Heo et al. in [2].
In their work, an extensive study of a continuously variable damper
model based on a detailed hydromechanic modeling approach is
presented. An alternative approach, based on the notch frequency
localized to reduce vibration transmissivity and used for the fluid
engine mount design, was presented in [3]. The research presented by
Patten et al. in [4,5] traces its origins to semi-active car suspension
research with later transfer of the design concepts to civil engineering
applications. The use of semi-active dampers is considered in this
work to increase the useful life of bridges. The application of
semi-active damping technology in seismic protection is reported by
Symans and Constantinou in [6].

Applications often lead to systems of the time-periodic nature,
with their models represented in nonlinear, linear, or linearized time-
periodic format [7,8]. This problem domain is well represented by
the applications within the rotary aircraft sector, with significant
effort to control or minimize vibration levels in usually extreme
vibratory environments. These efforts have resulted in the design of
fully active control schemes based on the principles of the higher
harmonic control (HHC) theory. Within this methodology, single or
multiharmonic inputs are provided to these systems such that their
application modifies the original vibration patterns with an overall
effort dedicated to their minimization. An early account of this
approach is provided by Johnson [9], and recent theoretical analysis
of HHC is provided by Patt et al. [10]. The harmonic or general
periodic inputs assumed in general theoretical concept of HHC
were practically proposed to be applied via an active swash plate, an
active pitch link, actively controlled flaps, and active control of the
structural responses [11-14]. Among these concepts, the methods
based on actively controlled flaps indicate very good performance
gains, as shown in [13,14]. An extensive experimental study of the
combination of swash plate and active wing-flap-based vibration
control systems applied to a one-fifth-scale semispan aeroelastic
model of the tiltrotor V-22 was presented by Nixonetal.in[15].Ina
different context, Knospe et al. [16] implemented and analyzed the
use of magnetic bearings as magnetic actuators in the suppression
of synchronous responses caused by rotor imbalance. Pairs of input
harmonic control currents and output vibration harmonics were used
in the open-loop adaptive vibration control schemes. Mettin and
Kurz [17] presented an analytical study of a chaotic system with
periodic control. The goal within this methodology was the use of the
Fourier basis, represented by its coefficients to establish optimal
periodic control parameter modulation, such that selected perform-
ance characteristics were minimized.

An alternative to HHC implementations based on fully active
control concepts is a HHC methodology using semi-active control
principles. Despite potentially smaller performance gains, this
approach can provide an alternative to fully active or traditional
passive approaches. One investigation based on this principle is the
work of Anusonti-Inthra et al. [18]. In their paper, they report on a
configuration with a semi-active lag and assumed flap dampers for
vibration suppression. The effectiveness of the damper is suggested
to be significantly influenced by the variation of the orifice size
located between the two working chambers of the damper.
Their study is demonstrated on the light BO-105-type helicopter
during high-speed steady flight. The damper modeling and a model
reduction process were motivated by the approach presented in [6].
The model of the damper used in [18] within the framework of the
rotor aeroelastic code was a reduced-order model of the damper,
representing an equivalent viscous damper model with a variable
damping coefficient. The current paper and the research presented

here is inspired by this work. Alternative considerations related to
semi-active lag dampers are presented in [19,20]. Kamath et al. [19]
presented a comparative study of magnetorheological and fluid-
elastomeric lag dampers with a focus on modeling, identification,
and component-level performance issues. Zhao et al. [20] studied
helicopter ground resonance issues for the cases with controllable
magnetorheological lag dampers.

While presenting the damper based on identical concept to the
one presented in [18], the current contribution attempts to address
the given problem and reduce the computational and modeling
abstractions to a minimum. The hydraulic damper with an active
orifice or other flow-controlling component is assumed and modeled
on the basis of hydraulic system theory. This approach is used for
analysis and demonstrated via analytical case studies. The objective
of the paper therefore is to present initial reasoning, mathematical
modeling, and introductory analysis assuming a damper’s periodic
modulation or control and its operation in periodic working envi-
ronment with the same fundamental frequency. The vibration
suppression application itself is not included here as the current paper
serves to provide treatment of underlying concepts that can be used
later in a wider and application-specific context.

An introduction to the subject and references providing an
overview of the broader context of damper modeling and HHC-
based applications are provided in Sec. I. Section II introduces the
theoretical and modeling framework employed in the case studies.
The semi-active mode of the damper’s operation is described in
Sec. 111, and the two control signal parameterizations are presented in
Sec. IV. Section V presents case studies demonstrating the effect of
the active component on the overall damper performance and the
frequency response content.

II. General Modeling Arguments

In this section, a concept of the lag damper is briefly used to
introduce general modeling observations and arguments associated
with hydraulic dampers. This component can be assumed as a sui-
table representative of the damping devices working in a previously
specified periodic working environment. The general modeling
issues associated with this production component were part
of investigations presented in works [21,22]. Novel types of lag
dampers are magnetorheological fluid-elastomeric dampers [23] and
magnetorheological dampers [24].

The primary role of the lag damper is stabilization of blade
movement in its lead-lag plane. The need to employ separate,
traditionally discrete devices is primarily relevant in the transient
flight regimes (such as helicopter takeoff and landing with the well-
known problem of ground resonance). Thus, the lag damper provides
an additional mechanism of the energy dissipation during these
scenarios. General expectation in this case is that the damper will
produce high motion resisting forces, even for relatively small blade
lag velocities, to ensure stability requirements. To avoid excessive
load transfer into the blades and the rotor hub, the damper forces have
to be restricted to structurally acceptable limits via secondary bypass
flowpaths in the damper with the relief valves set up to activate when
the limit forces are reached. This effect is demonstrated in Fig. 1 for
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a) b)
Fig. 1 One cycle of experimental records of lag damper in action from:

a) a test rig with harmonic displacement excitation and b) flight tests
(both data sets scaled).



2406 TITURUS AND LIEVEN

one cycle of a damper’s operation. The damper force is shown in the
velocity-force domain for the flight-test and the laboratory-test
conditions. As is shown in this figure, a steep rise in the damper force
caused by a single small orifice is followed by significantly reduced
force increase induced by the activation of the secondary flowpaths.

Figure 1 demonstrates the presence of considerable hysteresis
effects in the velocity-force domain represented by the nonzero area
determined by the line corresponding to a single cycle during steady
damper operation. Figure 1a shows one velocity-force cycle acquired
during laboratory tests with the prescribed harmonic excitation of the
damper piston, and Fig. 1b presents the characteristics in the same
domain acquired during the flight tests. In both subplots, the vertical
and horizontal coordinates are scaled with respect to the maximum
values of the corresponding signals. The hysteretic behavior of the
damper force can be related to the compressibility effects of real
hydraulic fluids containing a finite amount of air as well as finite
stiffness within the damper’s structural components (such as the
cylinder walls and the elastic bearings) [22].

Consequently, the damper may show considerable velocity-force
hysteresis that is demonstrated by 1) partial springlike energy storage
and time-localized instantaneous positive power flow to the system;
2) smaller and smoothed-force peaks as responses to the extreme
velocities; and 3) lagging or delayed force response. Modeling
approaches exist that can generate physically based parametric
models of these devices while reflecting on these observations that
use standard hydraulic system theory assumptions (e.g., [25]).

III. Baseline Semi-Active Damper Model

A fixed or variable fluid volume with a number of inflow and
outflow fluid paths is assumed to be filled with a compressible fluid.
This approach can take into account the effect of compressibility
and is traditionally used in hydraulic actuator modeling. An early
reference applying these principles to linear hydraulic actuator
modeling is described by Mitchell and Johnson [26]. A more recent
study of the use of this modeling approach in the hydraulic actuator
control context is presented by Yao et al. [27]. An application of
this methodology to a model motorcycle damper was givenin [28]. A
detailed modeling study and experimental validation of the hydraulic
model of a vehicle shock absorber is presented in [29]. Contiguous
to these references, a passive lag damper with relief valves was
originally modeled using this methodology by Eyres in [21]. A
simple model of the damper considered in our studies is shown in
Fig. 2.

Chamber 1 Chamber 2
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4\ restrictor
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Fig. 2 Semi-active damper with through rod and variable fluid
restrictor.

The damper depicted in Fig. 2 consists of four main functional
parts: two chambers created by division of the cylinder by the piston
head, a moving symmetric piston, and a flowpath connecting the
two chambers with a variable opening representing the active fluid
restrictor. The general operating principle of the damper is based on
the occurrence of the pressure differential between the two chambers
due to energy conversion when piston-induced fluid flow has to
overcome local flowpath obstacles represented by designed and/or
controlled fluid restrictors such as the orifice. The force induced by
the damper is then approximately proportional to this pressure
differential.

Figure 2b shows hydraulic components and the quantities of the
model of the damper in which A p(¢) is the pressure differential and
the parameters p, 8, and 7 denote the fluid density, the effective
compressibility, and the dynamic viscosity, respectively. The damper
is assumed to be filled with standard hydraulic fluid (i.e., 8 # 0). V,
and +AV/(#) denote the initial volume and the volumetric changes,
respectively. The indices 1 and 2 are used to distinguish the two
chambers. The variable fluid restrictor is assumed to represent the
active element of the damper with a controllable orifice area Ay, .

A. Hydraulic Modeling of the Damper with Compressible Fluid

The movement of the piston forces fluid flow between the two
chambers such that the resulting volumetric changes have to be
accommodated by the available flowpaths. These paths include flow-
restricting features allowing only limited fluid transfer that can be
characterized by the functional relationship Q = g(Ap) [25], in
which Q is the volumetric flow rate through the flow-restricting
element and A p is the pressure difference across the element. When
the compressibility effects within the flow-restricting element are
considered, more complicated mass flow characteristics should be
applied [5]. The relationship Q = ¢(A p) represents the static char-
acteristic of the flow-restricting element. A combination of the
physical mechanisms can be attributed to a single physical realization
of the flow restrictor (e.g., orifice) in which these can be arranged

in a series such that
Ap=> Ap,
()

or in parallel such that

0(Ap) =) 0,(Ap)
()

or in their combination, in which the index/label 7 covers all specific
loss mechanisms for the given element. An example is the approach
in the long orifice in which the pressure differential across the orifice
corresponds to the pressure losses due to the fluid flow through this
orifice. Thus, pressure differential can be assumed in the form

Ap = Apim + APu = @1 (Q0) + d1uin(Q0)

in which the laminar and the turbulent pressure-loss mechanisms are
assumed to be arranged in a series, ¢;' is the inverse static char-
acteristic, A py,, represents the pressure loss due to laminar flow,
Apu 18 the pressure loss due to turbulent flow, and Q, is the
volumetric flow rate through the orifice. This model represents a
considerable abstraction of real situation and possible pressure-loss
scenarios across the range of the flow conditions.

Generally in dampers, due to their high-pressure nature, the
compressibility of the fluid f is an important parameter. It represents
the volumetric changes of the fluid under the influence of the
pressure. It is also generally pressure and temperature sensitive. In
this paper, an isothermal tangent fluid compressibility will be
considered, and it is defined as B(p)V = —dV/dp, where V is the
fluid volume and p is the homogeneous pressure of the fluid within
given volume. The statement of mass conservation within single
variable volume V;(f) can be expressed as ri1 = iy, — niy,, and this
relationship can be further developed for generalized ith variable



TITURUS AND LIEVEN 2407

fluid volume with multiple inflows s, ; and outflows iy, ; as

in,j
follows:
dm av, dp,
E _( Pi 1) = _+ me/ Zmnutk

@) (k)

=2 9O~ Zka(,m,k (1)

)] (k)

where p;, p;, and p, are the densities in the ith volume, jth inflow, and
kth outflow path, respectively; r;, ; and 11, are the jth inflow and
kth outflow mass flow rates, respectively; and Q;, ; and Q. are jth
inflow and kth outflow volumetric flow rates, respectively. An
assumption of homogeneous fluid density within the system p; =
P; = pr = pleads to the generic differential equation expressing the
pressure evolution within the chamber under the influence of the
previously mentioned factors [6,25]:

ZQm ](Apu) - ZQOUL k(Aptk) (2)

(k)

av, dp,
a + Bi(p)Vi(t) —— d

where f;(p;) is the pressure-sensitive compressibility of the
hydraulic oil, p; is the absolute pressure, Ap;; and Ap; are the
pressure differentials between the reference ith fluid volume and jth
inflow and kth outflow-related pressure sources/ports, respectively.
The flow rates Q; and Q, are dependent on the relative pressure
differentials A p;; and A p;;, respectively, where Ap;; = p; — p; and
Apy = pi— P

With reference to Eq. (2) and Fig. 2, equations for separate damper
chambers are

Vi+BVibr =—0ou Vo + BVopy = +0i> (3

Furthermore, an initial or reference piston-cylinder configuration

is assumed:

Vl = —Apyp
Vy=+Apyp 4)

Vi = Vo1 — Apyp,
Vo= Vo, + Apyp.

where V,, and V, are the initial or reference fluid volumes of
respective damper chambers, Ap is the pressure visible piston cross-
sectional area, and yp and y are the time-dependent piston displace-
ment and velocity.

This provides the initial set of two differential equations:

dpl 1 . 1 dyp
—=——(-V, - = —
dr ﬁ]vl ( 1 QouL]) ﬂl (+ P Qout]
dpy _ 1 dyp

1% —\-A 5
dr ﬂ V ( 2+Qm2) ﬂQVz( P 3, ds +Qm2 ( )

As only a single path for the fluid flow between the two chambers
is considered, the assumption of incompressible flow leads to the
relationship Quy.; = Qi = Qy, where Qy is the volumetric flow
rate through Ay, as shown in Fig. 2.

A single-state model of the damper can be produced for the
pressure differential Ap = p; — p,, and its time derivative is Ap=
P — P»- The use of A p with Eq. (§) along with the assumption of a
single flow rate Qy results in a new single-state model of the damper:

QV(AP)]
(6)

d(Ap) ( 1 1 )[ dyp
dr Bp)Vi(p) ,B(Pz)vz()’P) Plar

The loss of information about the evolution of the absolute
pressures p; necessitates the use of the pressure-insensitive com-
pressibility factors 8, = 8, = B, or the fluid bulk modulus B, =
1/B, corresponding to the reference pressure state with p; = p.
The state model of the damper has the form

aap) (1 I dyy
a _B°(v1(yp)+vz(yP))[ ~ OvlAr )] @

Equation (7) represents a nonlinear nonautonomous dynamic
system with a single state A p. This state is essential for computation
of the damper force approximation Fp ~ ApAp while neglecting
other often minor influences such as the friction and inertial forces
within the damper. An alternative solution approach to a similar
problem is presented in [30] for the case of a liquid spring shock
absorber.

B. Assumed Model of Fluid Flow Pressure Losses

Reference model (7) requires specification of the piston motion
yp(t) representing external time-dependent input to the system as
well as the static characteristics Qy = g(Ap). The piston motion
is specified explicitly as the function y, = f(f) when evaluating
damper in isolation, for instance, for model validation and refinement
purposes [22]. The relationship Q, = g(A p) crucially influences the
overall behavior of the hydraulic network, as shown in Fig. 2b. If an
incompressible hydraulic medium is assumed B, = 0, an inverse
form of this characteristic Ap = ¢g~!(Qy) can be directly used to
formulate the force generated by the damper based on the approxi-
mation F, = ApAp = Apg~'(Qy). The relationships for g ! can be
assumed in the polynomial form ¢~' = sign(Qy)qr|Qv|%, where
sign(o) introduces directional dependency into the characteristics.
This formulation employs the assumption of a volumetric variation
for incompressible fluid Qy = Apyp, and it leads to the statement for
the damper force F;, = Apg~'(Apyp) or specifically, in the case of
polynomial relationships,

Fpo= —sign(yp)eplypl” (8)

The damping coefficient for this polynomial model is
cp = qgA%™!, and the cases of friction, linear viscous, and quadratic
dampers are represented by the exponents « € {0, 1,2}. Where
a =0 leads to the basic model of the friction damper Fp,=
—sign(yp)cp o, @ = 1 results into the standard linear viscous damper
Fp, = —cp,1yp, and the use of o = 2 forms the quadratic damper
model Fp, = —cp,¥p|ypl-

The previous approach can be extended to mixed flow models by
the use of the rational polynomial formulation [31]:

Np
kv
Ap=Y_"d;0y
j=1

where N is the number of polynomial terms, the exponent k; € Ris
mostly specified between 0 and 2, and d; depends on the flow
characteristics. This general nonlinear form must be solved for Qy,
for a given Ap, such that this Qy can be used with model (7). A
directly solvable alternative can be produced for N, = 2, k; = 1, and
k, = 2, resulting in a quadratic relationship with an explicit form of
Qv = g(Ap) as required by Eq. (7). The directional form of Qy can
then be written as follows [21,32]:

Ap =D,Qy + D,0y|0y]

0, = sign(Ap)(—Dl Lot 4DZ|Ap|)/202 ©)

where D, corresponds to the linear loss model predominant during
small flow velocities and D, is related to the turbulent losses
dominating during high flow velocities. If D; = 0, then

Oy = Qy, =sign(Ap)VI|Apl|/D,

and alternatively, based on the Taylor series expansion for Ap — 0,
the flow rate is

Ov(|Ap| — 0) — Oy, = Ap/D,

The quadratic part of Eq. (9) Ap, = Ap,=D,0y|Qy|
corresponds to the turbulent pressure losses (e.g., [25]), and D, in
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this case could assume the form D, = p/[2(CpAy)?] [21,25,31],
where pis the fluid density, Ay is the total area of the opening, and C),
is the flow discharge coefficient [25]. In general, the parameter Cp,
depends on the number of flow characteristics such as the Reynolds
number Re, the opening/orifice topology, dimensional configuration,
etc. [31].

Whereas the previous model of the damper force Fj, is not
sufficient to represent the hysteretic features described in Sec. 11, it
provides a basic insight into the effects induced by the assumed or
observed characteristics Ap = ¢~'(Qy). However, these memory-
less models are not capable of accurately representing the damper
characteristics observed in Fig. 1. Therefore, the model shown in
Eq. (7) will be considered further. The considerations related to
equations Ap = g~'(Qy) are applicable in this instance as well. In
the case of Eq. (7), the volumetric fluid flow rate is symbolically
written in the directional form Qy(Ap) =sign(Ap)Qy(|Ap]). A
possible practical implementation of the damper structure shown in
Fig. 2 can be realized with controllable components based on the
servo-valve architecture (e.g., [1,4-6]). The relationship between Oy,
and Ap is again based on the considerations related to equations
Ap = q7'(Qy) [e.g., Eq. (9)]. The static characteristic of the valve is
constituted by the algebraic relationship between these variables and
a new variable u(t) € R representing variation (e.g., displacement,
rotation, etc.) of the controllable/active element of the valve. Based
on the previous discussion, the relationship is assumed to be of the
form Ap = D,Qy|Qy|, leading to the relationships Ap = ¢~ (Qy)
and Qy = q(Ap) (e.g., [33]) as follows:

Ap = {p/[z(CDAV)Z]}QV|QV|
Qy = sign(Ap)Cp(U)Ay[u()]V(2/p)|Ap]
= sign(Ap)Apy (i) V| Ap] (10)

where variable

Apy(u) = CpU)Ay[tuy] v/ (2/ p)

is the pseudosection function, I/ € {Re, geom, ... } is the set of all
factors influencing the fluid flow through the restrictor [33], u(?) is
the scaled form of u(r), where u(t) = u(t)uy, and uy, is the limit
change of the control variable. Static model(10) of the volumetric
flow rates through a variable opening/valve, where Qy is propor-
tional to /|Ap|, is used in the hydraulic actuator modeling for
the servo-valve models (e.g., [25-27]) and for the damper-related
modeling activities (e.g., [4—6]). The effect of the members of the set
U on varying C), is particularly important for low fluid velocities,
restricted flows, leak flows, and flows due to small A p, as illustrated
by Fig. 3. The concept of variable pseudosection parameter is also
shown here in Fig. 3 [33].

The damper, as shown in Fig. 2, can be initially assumed in some
reference configuration Apy(Uys), Where 0 < Uiy < e < Upax
with further activity limited such that %,;, < %(f) < U,.. Based on
previous discussions, the model of the valve pressure losses is
adopted with constant C}, leading to the reduced form of Eq. (10):

A PV.max

Ap(it)

leakage Apmin -

flow working range

"
0 i itmae 1 @1(1)
Fig. 3 Typical pseudosection function for a variable valve.

Qv = sign(Ap)CpAy[u()]V/(2/p)|Ap (11)

The model of the damper from Fig. 2 can be modified from Eq. (7),
employing Eq. (11) to the following form:

d(Ap) _ 1 1
e Bo (Vl (yp) * Vz(YP))

d 2
x{Apg—sign(AmcDAv[u(z)] (;)mm} (12)

This model of the damper provides information about the
evolution of pressure differences Ap and therefore also about
resulting damper forces. This is sufficient for present studies as the
purpose of the research here is analysis of the physical mechanism
behind perturbations of the standard damper behavior induced by
parameter modulations. The damper model can be augmented by
the model of the dynamics of active element. This model would
introduce realistic response limitations with respect to any required
active regime. Examples of relevant research can be found in papers
[27.33].

Finally, it is instructive to relate this model to the work presented
by Eyres [21]. If small oscillations around the reference piston
position are assumed, the following relationship between initial
volumes of the two working chambers can be written as Vi, = AV,
(Vo1 and Vi, are the constant initial volumes), V;[yp(0)] = V,;
(j=1,2), and A = R". Adopting notation for the orifice flow rate
Qo = Qy, general equation (7) can be rearranged to the form

Ap=[(1+A)/ABoVoillApypr — Qo (Ap)] (13)

which can be further reduced assuming an initial central position of
the symmetric damper with A = 1:

Ap = (2/BoVo)Apyp — Qo(Ap)] (14)

Equations (13) and (14) correspond to the hydraulic part of the
model used for the model of the damper with relief valves
investigated in [21].

IV. Semi-Active Damper Control Regimes
A. Semi-Active Mode of the Damper Model

Equations (7) and (12) represent a relatively complete model of the
generic symmetric damper shown in Fig. 2, featuring a quadratic
orifice and compressible fluid in steady thermal conditions. The
external variation of the parameters related to the model of the valve
influencing damper’s behavior via characteristics Qy = g(Ap) can
induce a semi-active mode of the damper operation. Introducing
parametric control over the selected subset of the valve’s physical
parameters modifies the original static characteristics to the new
parametric form Q, = q(Ap; py), where py € R represents the
vector of Ny physical valve parameters. Technically, the optimal
choice of the parameter values py = Py o, €ither in the local damper
or an overall structural context, can be the subject of a broader
optimization study based on the specifics of any future application.

The current problem specification assumes consideration of the
time-variable parameters py (¢) in the context of a periodic working
environment. A set of all valve parameters is divided into the subset
py s of the constant parameters and the subset py 4 (1) of the time-
variable and periodic parameters, where ¥ € [0, 27] is the angular
variable (azimuth angle) often used for the applications with rotating
components, generally expressed as ¥ = Q¢, with € representing
the nominal rotating frequency.

The previously introduced configuration leads to a new parametric
formulation of the valve static characteristics:

Qv = q[Ap; Pvs, Pva(W)l, Pra(¥) =pya(¥ +27) (15)

Based on the formulation in Eq. (15), the damper model with a
controllable or variable valve can be written as follows:
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d(Ap) 1 1
e Bo (Vl (vp) * Vz(yp))

d
X {APstP— Ov[Ap; Pvs, Pv,A(l/f)]}
Fp=ApAp (16)

or in the general dynamic system terminology, the damper model has
the following state-space form:

x = f[x, ¥; Py.s» Pra(¥)],
¥ € D, = [0, 27,
Py.a(¥) =pya(¥ + 27) € RV (17)

X € R

Pyvs € R

where N, is the number of damper model states and Ny = Ny g +
Ny 4 represents the division of all available valve performance
parameters into the static (or constant) and the variable (or active)
parameter subsets.

Model (17) is further used to produce derived response quantities
(in the current investigation, a single damper force) thus establishing
a direct link between the valve activity and the damper force output:

r=Fp=g[x;pys, Pva(P)] R (13)

where r is the output response and g(o) represents the general
nonlinear response-generating function used for performance
evaluations and the physical integration into wider structural
contexts (e.g., coupled structural analyses).

B. Parameterization of the Damper Activity Signal

The semi-active control regime with the use of the semi-active
damper is based on the assumption of effective parameter activity
described by relationships (15) and (16) or, in general, Eq. (17). This
effect translates into the output response quantities, as shown in
Eqgs. (16) or (18). The parameter activity is represented by the vector
subset py 4 (¥). For the parameter activity to be acceptable within a
given computational and operational framework, the 2m/Q-
periodicity is assumed, such that py ,(¥) =py4(¥ + 27) and
dpy A(0)/dyr = dpy o(27)/d.

The physical parameter activity parameterization introduces a
second layer of the parameterization of the problem and it also
establishes a control signal family P. This layer of the para-
meterization enables further analytical and numeric handling of the
problem. The definition of the activity parameterization

Pva =Pva(¥;p) (19)

where p € R"" is the (realization of) parameterization of the control
signal family P. It introduces new parametric relationships by its
propagation into the associated component characteristics and the
state-space equations:

Qv = q[Ap; py.s: Pva(¥; )] (20)

x =[x, ¥; pys. Pva(¥; P)] (21)

The concept of activity parameterization based on the two specific
signal families P will be introduced and demonstrated in the
following sections.

1. Piecewise Polynomial-Periodic Damper Activity Parameterization

One possible control signal family P, satisfying previous require-
ments can be based on the sequence of the piecewise polynomials
x;(¥), defined locally such that v € D; C [0, 2x], establishing
suitable activity parameterization of the elements of the vector
Pv.4(¥). A single active parameter py 4 ;(¥) can be assumed in the
following form:

Ny
Pvai(¥) = Pvaio |:1 + U Xj(Dj)i| (22)

j=1

where py 4,0 # 0 is the nominal, reference, or initial parameter
value, N, is the total number of the intervals D, and y;(v) is defined
such that

Ny
D, =D, =00.27]. DNDy=9 Vkik#l (23)
=

Control segment x;(D;) is defined on its local domain D; =
[, ¥;11] as the zero-slope control-point cubic polynomial with the
local coordinate system v = [0, 1]:

S - - W)
. = RV =" "7 24
x;(¥) ;a,mw V=1 N (24)

where the four coefficients a;,, are assumed to be specified so the
following continuity conditions are satisfied:

x;(0) = x;(1) =0,
Xj(]) = Xj+l(0) =Dj+1s

Xj—l(l) = Xj(o) =Ppj
U ¥a] =10, 27

(W]
D.ND, =9, Yk lk#I 25)

A set of the cubic piecewise polynomials x;(D;) is thus used
according to Egs. (24) and (25), resulting into the signal (waveform)
representing the parameter activity py 4 ; (), see Eq. (22). Specific
cubic polynomial parameterization (24) and (25) is chosen as a
convenient, continuous, and periodic time-domain signal represen-
tation suitable for later practical use. A set of the parameters defined
via the condition x;_;(1) = x;(0) = p; and associated continuity
conditions constitutes an activity parameterization with the param-
eter vector p = [p;] € R" uniquely specifying the active signal
waveform, where N, represents the number of the parameters
in the activity parameterization. In this case, parameters p; directly
represent the waveform’s control points, as will be also shown later in
the second case study of this paper.

2. Multiharmonic Parameterization of Damper Activity

This section deals with another form of activity parameterization
that is specifically suited for application in periodically operating
structures or machinery. Based on the nature of the current appli-
cation, the multiharmonic control signal family Pyyc, often used in
the field of HHC, can be chosen. The sum of the harmonic members
constituting the family Pyyc with their frequencies defined as integer
multiples of the €2 can be written either in the absolute form

Np/2
pv.ai(¥) =pio+ Z[P,:c.k cos(ky) + p s sin(ky)]
=

s DicNp/2s Pisngal € RN
(26)

P =[Pici Pisi =[Pici> Pisi> -

or in the normalized form:

Np/2

Prai) =1+ [picicos(ky) + ps sin(ky)]
k=1

s DiCNp2> Pisngs2] € RN?
@7

assuming that p;o # 0, p;cx = Pici/Pio> a0d Pisi = Pisi/Pio-

The physical value of the parameter will then be regained from the

relationship py 4 ;(¥) = pioDy.a.:(¥)-
Alternatively, an equivalent to sine—cosine forms (26) and (27), the
amplitude-phase form can be employed for the jth pair of the single

P= [I_Ji,c.ks ﬁi,s,k] = [I_Ji,c,l’ Disis -+
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harmonics via the correspondence {p;c ;. Pis;} —> {Ai,j, b}

where A,-.j = /Dic;+ Pis,; and tan(¢;;) = p;s;/Pic; Both

multiharmonic representations of the activity parameterization will
be used in this paper.

V. Case Studies

A. Demonstration of the Compressibility Effects in the Quadratic
Flow Restrictor

The qualitative nature of the model described by Eq. (12) and
Fig. 2 is demonstrated for the case with 8, =1/B, # 0 and the
harmonic piston excitation yp(f) = Yp sin(2zfpt). A simple fixed
circular orifice is assumed with A, = 7d2 /4. Figure 4 demonstrates
the scaled responses of three different damper configurations in
the velocity-force domain. The case with the maximum response,
Fig. 4a, is scaled with respect to its maximum force during one
steady cycle. Piston displacement y(t) is retained identically for all
three cases. The remaining two cases, Figs. 4b and 4c, are scaled
relatively to the case in Fig. 4a. The compressibility coefficients
are B € {By, 108y, 508}

The quadratic nature of the damper is observable in all subplots,
particularly in Fig. 4a. Increasing the compressibility causes a
smoother response; increasing lag between the piston excitation and
the damper force response manifests itself in the form of increasing
hysteresis in the velocity-force domain, and it also produces a
reduced response maxima for increased f. To complement this
demonstration, Fig. 5 shows similar effects of increased hysteresis in
the velocity-force domain for a constant § and changing diameter of
the orifice d,. The applied piston excitation is identical to the one
used in the previous case. Furthermore, scaling is applied here with
respect to the maximum force response from Fig. 5c.

Decreasing the size of the orifice causes not only an increase in the
forces generated by the damper for the identical excitation scenario,
but it also promotes an increased hysteretic behavior due to the
increased participation of the compressibility term in the flow rate
equilibrium within the fluid volume. Figure 5 also illustrates a basic
philosophy behind the concept of a semi-active damper in which the
form of the damper response for given conditions can be altered by a
change of the physical parameter from Eq. (12) or, more specifically,
from the flow rate Qy, .

force [-]

1
-1-05 0 05 1
velocity [-]
a) b) )
Fig. 4 The effect of compressibility on velocity-force characteristics of

a damper with a compressible fluid (scaled with respect to maximum
components of Fig. 4a).

velocity [-] velocity [-]

0.5 0 0.
velocity [-]

velocity [-] velocity [-]
a) b) ¢)

Fig. 5 The effect of orifice variation on velocity-force characteristics of
a damper with a compressible fluid (scaled with respect to maximum
components of Fig. 5c).

B. Demonstration of Periodic Valve Perturbation and its Effect on
the Damper Behavior

This case study focuses on the analysis of specific physical
mechanisms resulting from the periodic parameter modulation. The
qualitative nature of previous developments is demonstrated in this
section via the case of the damper represented by Eq. (16) with valve
characteristics according to Eq. (11) and the periodic parameter
modulation of the opening similar to the traditional servo-valve
designs. Based on the discussion provided in Sec. III, the valve
characteristics are assumed in the following simplified form:

Oy(Ap, ¥) =sign(Ap)Cpbyxy (V) v/ (2/p)|Ap|
= sign(Ap)Kxy (¥) V| Apl, (28)
xy(¥) = u(y) = u(y + 27)

where the parameter vectors listed in Eq. (15) are defined as py 5 =
[Cp), by]" and py 4(¥) = [xy (¥)]. The previous definition leads
to system (16) with the input set Z € {yp, x,} and the output set
R € {Fp}.

A simple perturbation Axy ,, to the nominal signal x () = xy g
is assumed to be applied periodically with a fundamental period
27/$2, as indicated in Fig. 6. This form of periodic damper activity is
used as it facilitates the analysis of the physical mechanisms in action
due to its time-localized nature. Each transition between the nominal
and the perturbed level lasts &, and is realized by the third-order C I
smooth polynomial function. The perturbed level itself lasts Ag,.
This signal form represents a single periodic event within its domain.
In addition to this form of periodic valve perturbation, an alternative
harmonic modulation will be demonstrated later in this paper.

The activity function xy,(¥) is analytically implemented as a
piecewise C'-smooth union of N; normalized control functions ¥ j
defined in their respective domains D; such that

Ny
xy(¥) = xv.0|:1 + U Xj(Dj)i| 29)
=1

where xy  is the reference physical value of the valve opening. The
remaining properties of this activity parameterization are defined in
accordance with the specification provided in Sec. IV.

The specification of the valve activity, according to Eq. (29), leads
to a defined activity parameterization. The bounding points of the
chosen intervals establish a set of the control points that also provides
activity parameters for a given definition. The current parameter-
ization is designed as described in Table 1. The physical values of the
damper model [see Eq. (16)] parameters are specified in Table 2.

Sine excitation of the damper piston is chosen in the form y, (¢) =
Y sin(y) with amplitude Y = 0.01 m and afrequency of excitation
fp =3.0 Hz, assuming v = 2z fpt. The two inputs to the system
specified by Eq. (16) are y» () and xy (1), and the observed output
is Fp(¥), approximately proportional to Ap(y) and evolving
according to Eq. (16). Apart from these quantities, due to the physical
nature of the model, it is possible to observe internal derived
variables such as the flow rates associated with different sub-
components of the damper. Based on the form of Eq. (16), three
volumetric flow rates will be observed:

Parmax

% I5,./h Ay, 6plbl Pe=0
g\ ----- =() <
S, Ps Q?I
P3=P+=Prp
Z: Z
Par;min
v, =0 Yo s \ 7 Y=27

Fig. 6 Example of a valve activity with a fundamental period of 2.
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Table 1 Parameterization specification for
activity demonstration

Control point no. (ID)
1) 2(A) 3B) 4© 50 60)

Azimuth position, deg 0 45 75 105 135 360
Perturbation, % 0 0 =75 =75 0 0

Table 2 Nominal parameters used in the damper study with
periodic perturbation

Parameter name, units Parameter label Parameter value

Fluid compressibility, Pa~! Bo=1/B, 1.39¢e — 9
Reference volume of chamber, m? Vo 3e—4
Flow discharge coefficient Cp 0.6500
Opening width, m by 0.0050
Opening length (reference), m Xyo 0.0019
Fluid dynamic viscosity, Pa - s n 0.0300
Piston cross section, m? Ap 0.0035
Fluid density, kg/m? Po 820.0000
Orifice length, m lo 0.0010
Qs(¥) = Klyp(WIAp(Y)
where
K@p)=BoViVa/(Vi + V), V= Vj()’P)

Ov(¥) and Qp(¥) =Apyp(¥). A balance of these quantities
represents a fundamental concept in the construction of model (16).
Two representations of the damper working cycle shown here are
the damper force-velocity and force-displacement characteristics,
indicating the hysteretic effects and work done during one cycle Wpc,
respectively. The Fourier analysis of the damper output F, () for
inactive and semi-active regime is presented, demonstrating the
central idea of the active components in the flow-metering regime:
the output frequency and the phase induced and modified by the use
of an active component.

For the numeric computations, a suite of MATLAB®-based
routines was programmed using the standard ordinary differential
equation solver capabilities provided in this software environment
[34]. Periodic regimes were simulated by allowing a suitable number
of the cycles to stabilize the model to produce periodic responses.
Typically, fewer then 10 cycles were sufficient to achieve this state.

The input-output relationship for the damper in a semi-active
regime, according to Eq. (29) and Table 1, is shown in Fig. 7. The
output damper force Fj, (/) is shown in physical units, and the input
quantities located in the same graph are scaled accordingly to provide
a suitable visual correlation between participating quantities. The
reference inactive regime is denoted by the dashed lines, whereas the
semi-active regime is indicated by the solid lines. Specific quantities
are identified by corresponding labels placed directly in the figure.

The region of localized activity was selected to be located in the
region with minimum velocities to indicate the velocity-sensitive
nature of the damper operation and the capability of the parameter
variation to induce significant response modifications while still
respecting the damper’s operational principles (e.g., of producing
only motion-resisting forces.) The sectors A-B and C-D feature
prespecified transitions to and from the perturbed state of the damper,
whereas the sector B—C presents the locally perturbed region itself.

The previous results can be made more informative by plotting
single parametric lines in the force-velocity [yp(¥), Fp(¥)] and
force-displacement [y,(¥), Fp(1)] domains, as shown in Fig. 8.
Again, the dashed lines indicate the reference inactive regime and the
solid lines represent the semi-active regime as specified previously.

Both subplots indicate significant variation of the reference shapes
due to parameter activity. In the force-displacement domain, an
increase in Wy is observed in the form of an increased area enclosed
by the response line. In the force-velocity domain, the original
quadraticlike loop is altered, producing a significant area enclosed by
the corresponding response line. The increase in Wi is related to the
increasingly restrictive nature of the opening with its decreasing area,
thus increasing hydraulic resistance to the fluid flow. To retain the
balance between demanded and allowed flow rates, a compressible
fluid compensates for reduced and increasingly restricted valve flow
rates Qv () by inducing increased hysteresis to the system behavior.
This is represented in the force-velocity domain as an increased
area enclosed by the response line. This effect is more clearly
demonstrated in Fig. 9, specifically by the evolution of Q4(¥).

A detailed observation of the effects due to parameter activity is
facilitated by the azimuth-dependent relationships of the relevant
flow rate elements shown in Fig. 9. The top subplot of the figure
shows a flow balance representation, and the bottom subplot presents
the state variable A p(v) that is computed as the primary variable in
the problem solution. Flow rates are labeled accordingly, directly in
the figure. Index label O represents the reference operational regime
and ptb denotes the regime with perturbed parameter activity.

The periodic perturbation event consists of the opening size
reduction followed by a brief operation on the perturbed level and
then a progressive return to the nominal value. It induces changes in
the flow rate ratios while the flow rate balance Qg(v¥) + Qv (¥) +

x 104
2

Fp [N], normalized: xy, yp [-]

) i I I

i I i i

0 45 90 135

180 225 270 315 360
Azimuth, y [deg]

Fig. 7 Operation of a semi-active damper with a locally perturbed control input.
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Fig. 8 Operation of a perturbed semi-active damper in force-displacement and force-velocity domains.

Flow rates: Qjx10 [m?/s]

Ap [MPa], normalized: xy, yp [-]

0 45 90 135

180 225 270 315 360

Azimuth, y [deg]

Fig. 9 Flow rate balances and differential pressure in a semi-active damper due to periodic piston excitation and valve perturbation.

Qp(¥) = 0 is always retained. In this specific case, the decrease in
xy () after the point A induces increased participation of Qg(¥);
this also leads to the increase in the pressure difference Ap(y)
peaking at the point B. In the meantime, the second input parameter
vp(¥) decreases to 0, as observed in Fig. 9, via a reduced slope of
yp(¥) for  — 90 deg. This allows a reduction of the high A p after
point B via an increased participation of Qy (). The changes of
Qg () are directly linked with the evolution of the state variable A p
via Qg(¥) ~ Ap(y), where Q4 can be thought of as the combination
of its chamber constituents Qg = K(p; — py) = Qg1 — Qp>-
Therefore, the compressibility-induced volumetric flow rate Qg(v)

itself represents the balance between the corresponding compres-
sibility flow rate changes in the separate chambers.

The character of A p(v) also indicates the extent of the hysteretic
behavior of the system. This can be observed by comparing A p, (/)
and Ap,.,(¥). The regime with the static opening responds to
yp — 0 almost immediately. In the perturbed system, when y, = 0
and Qp =Apyp =0, the flow equilibrium condition is Qg+
Qy =0, whereas the flows Qg and Qy remain relatively largely
perturbed. This leads to a delayed decreasing A p — 0 in the effort to
achieve instantaneous pressure equilibrium. Therefore, the time
instant with A p = 0O is lagging after the specific event that causes this
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Fig. 10 Fourier analysis of nominal and perturbed damper force
waveforms (dark arrows and bold font indicate nominal regimes and
light arrows and italic font denote semi-active regimes).

effect in the incompressible setting. The degree to which this lagging
effect occurs can be attributed to the combinations of the inputs to the
system; in this case, yp and xy. This lagging behavior shows in the
velocity-force domain as perceived hysteresis.

The effect demonstrated in Fig. 7 (i.e., the alteration of the damper
response from Fpo(¥) to Fp,,(¥) due to modulated parameter

xy () for given velocity profile y,() in the periodic operational
regime) can be further analyzed in the frequency domain. Fourier
analysis of the periodic nominal Fp () and the modulated
Fp () is presented in Fig. 10 in the form of an Argand diagram.
The separate frequency components in the figure are denoted as xR
and x=1, 2, ..., where x denotes the integer multiple of the
fundamental angular frequency €2 of the rotating component.

By providing information about the phase and the magnitude,
Fig. 10 allows observation of the influence of the periodic parameter
modulation on the response content in the frequency domain.
Figure 10 indicates that the use of the periodic parameter modulation,
such as the dimensional variation of the passage between the two
working chambers of the damper, can be used to alter the magnitudes
and the relative phases of the response’s frequency components. As
an example, in the current case, the chosen parameter type and its
associated periodic waveform induced significant increase in the
magnitude of 2R and the reduction and phase change of the 3R
component of Fp, ,, (). Further interest can therefore be directed
toward establishing a theoretical and computational framework in
which these effects could be employed advantageously in the

Fig. 11 Force-velocity domain of the semi-active damper with reference piston input, harmonic damper activity with changing frequencies (columns),

and phases (rows) (scaled with respect to a nominal scenario).



2414 TITURUS AND LIEVEN

periodic modulation-based semi-active vibration control of periodi-
cally operating systems. This can be achieved in rotating systems
in which only certain harmonic force components filter from the
rotating coordinates system to the fixed frame, and thus the periodic
modulation can be focused on the modifications of only selected
frequency components of the responses in the rotating coordinate
frame.

C. Demonstration of Harmonic Modulation of the Damper
Parameter

The identical computational configuration to that specified in the
previous section will be used in this section to present a demon-
stration of single harmonic damper activity with the fixed reference
piston excitation. The piston excitation is identical to that presented
previously. Parameter activity will be conveniently described as
single harmonics with phase delay in the normalized form:

xV(W) = xV.mezm[1 + XV COS(k‘ﬁ + ¢X/k)] (30)

where the normalized amplitude of the harmonics X, and its
phase shift ¢y will be defined differently for different studies.
Parameterization of the activity signal in this case is therefore
P = [Xv, ¢x]- The value of the mean or the reference opening xy can
is the same as the previous case study. In the parametric studies
presented here, the normalized amplitude of the harmonic variation is
Xy =0.25.

Two parametric studies are provided in this section to demonstrate
the effect of the harmonic parameter activity. In the first study,
harmonic frequencies kR and phase shifts ¢y for given X, will be
used to provide the force-velocity and the force-displacement
characteristics. In the second study, a single harmonics will be
investigated for the full range of the phase shifts ¢y € [0, 27].

The first parametric study is presented in Figs. 11 and 12.
Figure 11 demonstrates the force-velocity domain of the activated
damper, whereas Fig. 12 presents results in the force-displacement
domain. In both figures, the columns correspond to the frequencies
{1, 2, 3}R and the rows correspond to the varying phase shifts

Fig. 12 Force-displacement domain of the semi-active damper with reference piston input, harmonic damper activity with changing frequencies

(columns), and phases (rows) (scaled with respect to a nominal scenario).
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¢x € {0,90, 180,270} deg. Angle ¢y/k is the actual relative phase
angle between the signal x, () with frequency fp, = kfp and the
signal yp(¥) with frequency fp. Moreover, main shifts are
complemented with a pair of responses generated only for the
shifts ¢y £ A¢y, where A¢y =20 deg to indicate variability
associated with the parameter change. Within both figures, reference
results are presented by the thin solid lines, whereas thick solid
lines demonstrate the specific main cases of the parameter pairs
X v.r» §x.s). Dotted lines denote the cases corresponding to ¢y +
A¢y and the dashed lines denote cases ¢y — A¢y. All results are
scaled with respect to the maximum absolute forces and the
displacements derived from the reference case of the classical
damper without parametric activity. The subplots are identically
scaled to allow cross comparison of the results.

Obtained periodic solutions in both domains [y, Fpland[yp, Fp]
indicate that the application of the harmonic, or possibly multi-
harmonic, signals to describe the damper parameter activity in the
periodic environment can lead to significant alterations of the
reference characteristics. In the force-velocity domain, this is char-
acterized by both increased and decreased effect of compres-
sibility and associated delay, resulting in significant increases in
the peak forces produced by the damper throughout the cycle. In the
force-displacement domain, the area enclosed by the characteristic
lines shows both effects: the increase and decrease of the work done
per cycle; all this is dependent on a given configuration, the piston
excitation frequency content, as well as the activity characterization
in terms of the frequencies and the phase delays.

Previous results show that a semi-active damper in the periodic
regime can induce both types of effects: for example, the effects with
significantly increased resistance to provided motion due to temporal
coincidence in high velocities and smaller valve openings or
decreased resistance due to coincidence in the low piston velocity
and increasing opening of the control valve. The effects associated
with increased resistance and the damping capacity may result into
high peak forces, and it is therefore expected that the choice of the
parameter activity values in the semi-active damper will have to be
augmented with a constraint limiting maximum allowable value of
these forces.

The damper operation in assumed periodic conditions is now
analyzed further, with the parameter activity frequency set at 3R and
the full range of phase shifts ¢y € [0, 277]. Figure 13 summarizes
results of this study. It represents the Argand diagram for a number of
damper force responses Fj, (/). Every closed loop within this figure
is associated with a single frequency of the Fourier decomposition of
Fp (). Furthermore, every point of these lines corresponds to the

4000

2000
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—-2000

-4000 i : ‘ :
—-4000 —-2000 0 2000 4000
Ay (cos) [N]

Fig. 13 Harmonic representation of the damper forces in the

parametric study with parameter activity based on 3R harmonic
variation with the full range of phase delays.

specific scenario with the activity amplitude X, = 0.25, the activity
frequency 3R, and a specific ¢y from the interval [0, 27]. In total,
30 points ¢y were used from the interval with equidistant spacing
constituting closed loops in the Argand domain of cosine and sine
harmonic components of Fp (). In Fig. 13, harmonic components
{2, 3, ..., 8}R are shown. The loop corresponding to 1R is not
shown as it is displaced from the central part of the applied
axes boundaries. The 1R component is the dominant harmonic
component of Fp (1), as shown in Fig. 7, and also indicated for a
single case in Fig. 10. Moreover, this quantity does not indicate
significant variability while varying ¢y. Figure 13 uses physical units
of the damper force Fp,.

This figure gives closer insight into the effects of the internal
damper parameter modulation/activity for the specified piston
excitation scenario. The size of the closed loops is indicative of the
sensitivity of the frequency components of Fj, with respect to the
parameter changes. Figure 13 clearly indicates dominance of the 2R
and 4R response alterations induced by the 3R parameter activity for
the full range of the phase shifts ¢y € [0, 27]. This observation
suggests a possible mechanism relating the interaction of the two
inputs y, and x, on the single observed response F; within the
context of the studied nonlinear system [e.g., Eq. (16)]. In the current
scenario, the dominant input frequency components from both
input sources (i.e., the piston oscillation at 1R and the parameter
modulation at 3R) couple together so that the major influence on Fp,
is observed at one-multiple 4R and half-multiple 2R. It is this effect
of mutual frequency-based coupling leading to the ability of multi-
frequency phasing that can be further developed in the complete
computational framework, including a semi-active damper as its
subcomponent.

VI. Conclusions

This paper introduces analysis of a semi-active hydraulic damper
in a periodic working environment. This assumption, in the broader
sense, establishes an instance of a semi-active vibration controlling
device. The two principal theoretical aspects of this paper are the
application of standard hydraulic system theory considerations and
assumed periodic damper excitation along with imposed periodic
damper modulation. The damper modulation is implemented via two
alternative approaches: local parameterization using a piecewise
polynomial representation and global parameterization using a
multiharmonic representation of damper modulation signal.

Assuming a discrete frequency content based on the identical
fundamental frequency, the periodic modulation mode of the semi-
active device in the periodic working environment is assumed to
retain the periodic nature of the responses of the interest in the
steady (e.g., trimmed) modes of operation. The semi-active device
presented in this paper is a hydraulic damper with a controlled flow
restrictor between the two working chambers of the damper. This
provides a realistic, robust, and practical platform of general utility in
semi-active control in assumed operating conditions. A controlled
flow restrictor induces changes in the generalized flow rate balance
equation, including the effect of the fluid compressibility that is a
characteristic factor of these systems. The physical reasons behind
the damper response modulation are described and explained in the
simulated case study of the damper with a realistic representation
of the flow restrictor and other model parameters. This and the
subsequent case study demonstrate that the assumed configuration of
the damper can alter the response frequency content via internal
periodic modulation of the physical parameters for given reference
piston excitation conditions.

Based on the presented results, further considerations and devel-
opment of this concept require 1) an integration of the damper into an
application within which the damper could be used as semi-active
vibration controlling device, and 2) further component-specific
and application-specific sensitivity and performance studies of the
internal mechanisms of the physical coupling between the structural
excitation of the damper and the semi-actively induced flow
modulations.
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